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Appendix A: Full Definition of Equilibrium

Given the auction protocol, a stationary symmetric recursive equilibrium consists of:

1. Value functions V, VR, VD;

2. Price functions Q, QD;

3. Bid price function p;

4. Policy functions B′, ℓ, Pc, d.

such that the following conditions are satisfied:

1. Default decision optimality: given VR and VD, d solves the government’s default or

repayment decision and V is the resulting value function;

2. Borrowing decision optimality: given V and p, {B′, Pc, ℓ} solve the government’s

repayment problem and VR is the resulting value function;

3. Asset pricing in good standing: given d, B′ and QD, Q satisfies the functional equa-

tion defining the value of debt while in good standing;

4. Value of default: given V, VD is the value function for the government upon default;

*E-mails: ralvesmonteiro@imf.org, sfourakis@jhu.edu.
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5. Asset pricing in default: given Q, QD satisfies the functional equation defining the

value of a defaulted bond;

6. Bid optimality: given Q, B′ and Pc, p satisfies the bid optimality condition of ex-ante

zero profits for investors;

7. Auction clearing: given p, Pc and B′, the sum of accepted bid quantities equals the

debt issuance, ℓ ≡ B′ − (1 − λ)B.

Appendix B: Omitted Proofs

Theorem 1 (Revenue Equivalence). If B′ is a random variable independent of the auction

protocol, then ex-ante expected revenue in the auction is the same under both protocols.

Proof: Let B′ be a continuous random variable with cdf G. Let, as before, ∆D and ∆U

denote, respectively, revenue under the discriminatory and uniform price protocols.

E[∆D(b′)] =
∫ bH

0

[∫ b′

0
p(b)db

]
dG(b′)

=
∫ bH

0
p(b)

[∫ bH

b
dG(b′)

]
db

=
∫ bH

0
p(b)[1 − G(b)]db

= R−1
∫ bH

0

[∫ bH

b
F(vd(b̃))dG(b̃)

]
db

= R−1
∫ bH

0
F(vd(b̃))g(b̃)

[∫ b̃

0
db

]
db̃

= R−1
∫ bH

0
b̃F(vd(b̃))dG(b̃)

= E[∆U(b′)]

The first equality defines expected revenue under a discriminatory price protocol. For the

second equality we proceed by changing the order of integration. After simplifying the

expression, and substituting p(b) by its equilibrium expression, for the fifth equality we

perform another change in the order of integration. Simplifying yields the definition of
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expected revenue under the uniform price protocol.

Proposition 1. Bidding marginal prices is a dominant strategy for investors.

Proof: Let P denote the set of marginal prices chosen by the government. A marginal

price Pc(θ; p), depends on the realization of θ, for a given aggregate bid schedule. As θ is

drawn from a discrete distribution with finite support, the set P is itself finite.

Let the shock θ take two possible values, further, let the associated marginal prices be

Pc,1 > Pc,2. Consider a bid with price p. Suppose for the sake of contradiction that a bid

function (p1, p2) that has p1 = Pc,1 > p2 > Pc,2 dominates (p1, p′2) that has p1 = Pc,1 >

p′2 = Pc,2.

The first bid is the same across bid functions so we can focus on the second bid. First

note that the bid with price p2 is accepted with the same probability of a bid with price

p′2 = Pc,2, as there is no marginal price chosen in between Pc,1 and Pc,2. It follows that

Pr[Pc(θ) ≤ p2] = Pr[Pc(θ) ≤ p′2] = Pr[Pc(θ) ≤ Pc,2]

Second, the value of debt only depends on the marginal price, that is not affected by an

individual infinitesimal dealer. In particular we have Q(ℓ(Pc,1)) ≥ Q(ℓ(Pc,2)). That is,

bidding p2 instead of p′2 does not affect the value of debt, the investors payoff if the bid

is executed. The cost associated with bidding p2 > Pc,2, however, is greater than bidding

p′2 = Pc,2. The dealer’s unitary profit for this bid is then:

Pr[Pc(θ) ≤ Pc,2]

(
Q(ℓ(Pc,2))− ϕ(p2, Pc(θ)|ℓ(Pc,2))

)

For a discriminatory price protocol ϕ(p2, ·) = p2 and

Pr[Pc(θ) ≤ Pc,2]

(
Q(ℓ(Pc,2))− p2

)
< Pr[Pc(θ) ≤ Pc,2]

(
Q(ℓ(Pc,2))− p′2

)
(1)

Let the uniform price protocol be the limiting case when ϵ → 0 as follows: ϵp2 + (1 −

3



ϵ)Pc,2, then in the limit,

ϵp2 + (1 − ϵ)Pc,2 − (ϵp′2 + (1 − ϵ)Pc,2) → 0 (2)

and the government is indifferent between bidding p2 and p′2.

Note that (1) and (2) contradict p = (p1, p2) dominating p′ = (p1, p′2). It follows that bid-

ding marginal prices is a strictly dominant strategy under a discriminatory price protocol

and a weakly dominant strategy under a uniform price protocol.

Appendix C: Investor Heterogeneity

To assess differences across dealers we first look at the variation in the price of the first

bid, with the lowest yield (highest price). The first bid in a dealer’s bid function is the

most likely to be executed as it has the lowest yield. As such, we argue that this bid is

also the most informative regarding dealer’s characteristics.

Figure 1 presents the standard deviation of the lowest bid yield across dealers, {1, . . . , N},

at a given auction, for treasury bills and treasury bonds. More precisely, each point rep-

resents the average of such standard deviations across auctions, {1, . . . , Mt}, for a given

year, t as follows:

SDt =
1

Mt

Mt

∑
j=1

√√√√ N

∑
i=1

(pi1j − p1j)
2

N

We separate this analysis for bills and bonds as the set of dealers participating in bills and

bond auctions are potentially different. Moreover, for bonds, we see a change in protocol

during the crisis as well as a hiatus on issuances.

For both securities we see that prior to the crisis the standard deviation is very small.

We then see a temporary increase during the crisis period followed by a return to zero

afterwards. This pattern is more clear for treasury bills given the continued issuance of

these securities during the crisis. Apart from that, the main difference with respect to

treasury bonds is that after the crisis the variation does not quite go back to zero, instead

it remains at slightly higher levels than before the crisis. This change in pattern occurs at
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(b) Treasury Bonds

Figure 1: Variation between dealers’ lowest bid yields

the same time as the protocol for treasury bond auctions switched from discriminatory to

uniform price.

Figure 2 presents the standard deviation of bid yields, within a bid function, for each

dealer. More precisely, each point represents the average of such standard deviations

across auctions, {1, . . . , Mt}, for a given dealer, i, and a given year, t, as follows:

SDi,t =
1

Mt

Mt

∑
j=1

√√√√ Kj

∑
k=1

(pikj − pij)
2

N

The time series of the average standard deviation as a similar trend across all dealers

(across panels): 1) increasing towards 2008; 2) a drop in 2009 before the crisis; 3) higher

from 2010 to 2012; 4) a decrease starting in 2013 particularly accentuated in 2014; and, 5)

almost flat bid functions from 2014 onward. Note, however, that some dealers have more

disperse bid functions than others during the crisis period.

Having said this, the standard deviation across and within investors is at roughly the

same magnitude. This leads us to conclude that the pattern we see in Figure 3 of the

main text is due to all investors bidding at a wider range of prices, as well as some of

them bidding at higher prices and others at lower prices. That is, steeper aggregate bid

functions are due, in part, to steeper individual bid functions.
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Figure 2: Average standard deviation of bids between dealers

No persistent heterogeneity. Finally, we evaluate whether there are persistent differences

across investors. To do so, we rank the first bids, with the lowest yields, across dealers

in a given auction. As before, we use the first bid as it is the most informative about

differences across dealers. We postulate that if there were persistent differences across

investors, we would see a persistent pattern in this ranking. For instance, well informed

dealers would likely bid closer to the marginal price of the auction and consistently be

ranked lower. Figure 3 depicts the relative ranking over time for each dealer across trea-

sury bill auctions. We focus on treasury bills to highlight this fact due to the continued

issuance of this type of securities during the crisis1. One can see that a persistent pattern

does not seem to exist, in fact, ranking over time seems to be independent of dealer.

The horizontal bars in Figure 3 represent the dealer fixed effect, αi, in the following re-

gression:

Rit = αi + ϵit

where the dependent variable Rit depicts dealers’ i ranking in the auction ran at time t.

Year fixed effects were not included due to lack of significance. The dealer fixed effects,

1The same pattern emerges for treasury bonds.

6



2005 2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

R
an

k 
of

 fi
rs

t a
cc

ep
te

d 
bi

d

Figure 3: Rank of first bid (if accepted) over time

as seen on the figure are fairly close to each other, with few exceptions, mostly on the

lower panels. Particularly, those exceptions tend to be more significant for dealers that

participate in auctions during shorter periods of time2. Overall, individual and time fixed

effects account for less than 5% of the variation of rankings across investors and over

time3.

Appendix D: Two Period Environment, Alternative Specification

Consider the environment described in section 3. Instead of unexpected spending as a

random variable, consider a preference shock in the first period. In particular, preferences

over streams of consumption are as follows:

E [θu(c0) + βu(c1)]

The taste shock, θ, is privately observed by the government. It is drawn from a continuous

distribution with support on [θL, θH] with θL < θH and cdf G. We further assume that

2From all participating investors, 6 were not included in the plot as they participated for even shorter
periods of time, making it harder to highlight trends in their ranking.

3We further test for linear trends within investors across time and verify that they are either not signifi-
cant or explain less than 10% of the variation of the ranking over time.
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g(θ) = G′(θ) > 0 on [θL, θH].

We use the same parameterization as before with one difference. Suppose that vd =

y(1 − exp(−z)) with z distributed exponentially with cdf F(z) = 1 − exp(−µz) and z =

−ln(1 − vd/y). Then F(vd) = 1 − exp(µln(1 − vd/y)) = 1 − (1 − vd/y)µ and F′(vd) =

(µ/y)(1 − vd/y)µ−1. For µ = 1 this collapses into an uniform distribution on the interval

[0, y].

Commitment to a Borrowing Rule

We first tie the hands of the government. Suppose the government could commit to a

borrowing rule, θ is observed ex-post and the government commits to it. In particular, the

government commits to the optimal borrowing rule under UP, regardless of the protocol

being used. That is, b(θ) = b(θ)UP. By fixing the distribution of b′ across protocols, utility

in the second period is independent of the protocol. Furthermore, we recover revenue

equivalence. With linear utility, welfare is pinned down by

E[θ∆(θ)] = E[θ]E[∆(θ)] +C(θ, ∆(θ))

In particular, the difference in welfare across protocols is determined by the covariance

term. This term is the insurance component that stems from the curvature introduced by

the multiplicative taste shock, θ.

In Figure 4 below we can see how the protocols compare. Panel (a) illustrates the commit-

ment to a borrowing rule as a function of θ. Panel (b) shows us that static dilution is still

present, with the bid schedule under a DP lower than the one under a UP. Panel (c) high-

lights the potential benefits of insurance, higher revenue in bad states at the expense of

relative lower revenue in good states. Panel (d) shows us that welfare tends to be higher

under DP, particularly when there are large financing needs in the first period.

Ex-ante welfare is higher under DP:

E[V(θ)UP] = 1.754 E[V(θ)DP] = 1.761
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It follows that the covariance term is larger under DP.

(a) Borrowing Decisions (b) Bid Schedules

(c) Revenue (d) Value functions

Figure 4: Comparing outcomes under commitment to b(θ)UP

To evaluate the cost of not committing to the borrowing rule, we let the government

choose optimally for each realization of θ, given the price schedule. Note that welfare

under a UP will be unchanged as the government was already choosing optimally. As

such, the difference in welfare under the DP measures the static dilution that arises from

the lack of commitment. This specification of the environment allows us to get a closed

form solution detailed below.

Closed Form Solution

The equilibrium under a uniform price protocol is fairly standard to solve. Under the

specified functional forms, we can also find a closed-form solution for the fixed point
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problem described above, between investors’ and government’s strategies, under a dis-

criminatory price protocol.

Consider linear preferences, such that u(x) = x. Let us first characterize the equilib-

rium under a discriminatory price protocol. An equilibrium requires an actuarially fair

price for investors and attaining the maximum in problem (1) of the main text, respec-

tively:

p(b) =
1

1 − G(θ(b))

∫ θH

θ(b)
Q(b(θ))dG(θ)

θp(b(θ)) = βF(y − b(θ))

These two conditions together give us a single optimality condition:

θ

1 − G(θ)

∫ θH

θ
F(y − b(x))dG(x) = βRF(y − b(θ))

Before we solve the equation above, let us just point out that the solution relies on the

fact that for a small enough θ the government does not borrow, b(θ) = 0, and so the

probability of repayment equals one. As θ → 0 the benefit of borrowing goes to zero as

U only depends on consumption in the second period. Below we show that borrowing is

non-decreasing in θ.

Proposition 1 (Monotonicity of b). If u is strictly increasing and concave, β ∈ (0, 1), and

f (vd) = F′(vd) > 0 on [v, v], then b(θ; p) is non-decreasing in θ.

Proof: Suppose, for the sake of contradiction that b(θ) is strictly decreasing in θ.

A government chooses b such that:

θu′(y + ∆(b)− b0)∆′(b) = βF(u(y − b))u′(y − b) (3)

Let θ2 > θ1 > 0 and b(θ1) and b(θ2) be the optimal choices associated with θ1 and θ2, re-

spectively. Note that the marginal benefit of borrowing (left-hand side) is non-increasing

in b. First, u′(y + ∆(b) − b0) is non-increasing in ∆(b) as u is concave by assumption;
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∆(b) is a concave function of b as the price schedule is a non-increasing function of b

and so ∆′(b) is also non-increasing. Further, optimality requires that ∆′(b) ≥ 0 along the

equilibrium path. As θ2 > θ1 and b(θ1) > b(θ2), it follows that:

θ2u′(y + ∆(b(θ2))− b0)∆′(b(θ2)) > θ1u′(y + ∆(b(θ1))− b0)∆′(b(θ1)) (4)

Pick a value of y (or v) such that F(u(y − b(θ2))) = 1, that is, u(y − b(θ2)) > u(y −

b(θ1)) ≥ v. Then, for θ ∈ {θ1, θ2} the government never defaults and Q(b(·)) = R−1.

The marginal cost of borrowing, when default is a zero probability event, is non-decreasing

in b, as u is concave and F(·) is constant and equal to 1. As b(θ1) > b(θ2), it follows

that:

βF(u(y − b(θ2)))u′(y − b(θ2)) ≤ βF(u(y − b(θ1)))u′(y − b(θ1))

Note that equation (3) then requires:

θ2u′(y + ∆(b(θ2))− b0)∆′(b(θ2)) ≤ θ1u′(y + ∆(b(θ1))− b0)∆′(b(θ1))

which contradicts equation (4).

Under a discriminatory price protocol, we have established that, with linear preferences,

for any θ that has the government borrowing in equilibrium, it must be that:

θ
R−1

1 − G(θ)

∫ θH

θ
F(vd(b(x))dG(x) = βF(y − b(θ))

Let n(θ) ≡ F(y − b(θ)), denote the probability of repayment at θ. Then, the equation

above is

θ
∫ θH

θ
n(x)

dG(x)
1 − G(θ)

= βR n(θ)

Set N(θ) ≡
∫ θH

θ n(x)dG(x) and N′(θ) = −n(θ)dG(θ). Then,

θN(θ) = −βR
1 − G(θ)

dG(θ)
N′(θ) ⇐⇒ N′(θ)

N(θ)
= − θ

βR
dG(θ)

1 − G(θ)
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For an exponentially distributed θ, we have G(x) = 1− exp(−λx) and dG(x) = λexp(−λx).

N′(θ)

N(θ)
= − θ

βR
1 − G(θ)

dG(θ)
⇐⇒ log(N(θ)) = − θ2λ

2βR
+ C =⇒ N(θ) = K.exp

(
− θ2λ

2βR

)

where K = exp(C). Taking derivatives we get:

N′(θ) = −K
θ

βR
exp

(
− θ2λ

2βR

)

Recalling that N′(θ) = −n(θ)dG(θ), by definition this is equivalent to:

n(θ) = K
θ

βR
exp

(
λθ − θ2λ

2βR

)

This must be true for some K > 0. To determine the value of K, we make some assump-

tions about the nature of the equilibrium. In general, an equilibrium of the kind we posit

always exists. We look for equilibria in which 1) there is a θ̂, such that the government’s

first order condition holds at b′ = 0 (and therefore n(θ̂) = 1), and 2) at this θ̂, it is the case

that n′(θ̂) = 0. The second condition selects a specific θ. In particular, it selects the lowest

possible one. We begin solving for θ̂ and K by examining the implications of n′(θ̂) = 0.

The derivative of n(θ) is:

n′(θ) = K
1

βR
exp

(
λθ − λθ2

2βR

)
+ K

θ

βR

(
λ − λθ

βR

)
exp

(
λθ − λθ2

2βR

)

Collect terms to rewrite this as:

n′(θ) = K
1

βR

(
1 + λθ

(
1 − θ

βR

))
exp

(
λθ − λθ2

2βR

)

Since the collection of terms outside the big parentheses are all positive, we see that this

is a parabola that opens down. Setting it equal to 0 yields:

1 + λθ − λθ2

βR
= 0
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We will want the right root of this (so that n′(θ) is appropriately negative for θ ≥ θ̂). The

above can be rewritten as:

θ2 − βRθ − βR
λ

= 0

Then θ̂ is given by:

θ̂ =
βR +

√
(βR)2 + 4 βR

λ

2

Finally, having solved for θ̂ in terms of parameters, we can quickly solve for K as the

solution to:

1 = n(θ̂) = K
θ̂

βR
exp

(
λθ̂ − λθ̂2

2βR

)
So:

K =
βR
θ̂

exp

(
λθ̂2

2βR
− λθ̂

)
Then, n(θ) becomes:

n(θ) =
βR
θ̂

exp

(
λθ̂2

2βR
− λθ̂

)
θ

βR
exp

(
λθ − θ2λ

2βR

)

which can be simplified to:

n(θ) =
θ

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

)
=

θ

θ̂
exp

(
− λ

βR
(θ − θ̂)

(
θ + θ̂

2
− βR

))

Given a functional form of F(·), this can then be mapped back to choices of b′ using the

definition:

n(θ) = F(y − b′(θ))

Suppose that vd = y(1 − exp(−z)) where z is distributed exponentially with cdf F(z) =

1 − exp(−µz) and z = −ln(1 − vd/y). Then F(vd) = 1 − exp(µln(1 − vd/y)) = 1 −

(1 − vd/y)µ and F′(vd) = (µ/y)(1 − vd/y)µ−1. When vd = y − b(θ), the term 1 − vd/y
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becomes:

1 − y − b(θ)
y

=
y − y + b(θ)

y
=

b(θ)
y

Using the optimality condition we get:

βF(y − b(θ)) =
θR−1

exp(−λθ)
N(θ) ⇐⇒

⇐⇒ β

(
1 −

(
b(θ)

y

)µ)
=

θR−1

exp(−λθ)

βR
θ̂

exp

(
λθ̂2

2βR
− λθ̂

)
exp

(
− θ2λ

2βR

)
⇐⇒ 1 −

(
b(θ)

y

)µ

=
θ

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

)
⇐⇒ b(θ) = y

(
1 − θ

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

)) 1
µ

Recall that p(b(θ)) = β
θ F(y − b(θ)), it then follows that:

p(b(θ)) =
β

θ

(
1 −

(
b(θ)

y

)µ)

=
β

θ

1 −

y
(

1 − θ
θ̂

exp
(

λ(θ − θ̂)− λ
2βR (θ

2 − θ̂2)
)) 1

µ

y


µ

=
β

θ

(
θ

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

))
=

β

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

)
= p(θ)
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Under a uniform price protocol, an equilibrium with positive borrowing requires:

θ∆′(b(θ)) = βF(y − b(θ)) ⇐⇒

⇐⇒ θ

[
Q(b(θ)) +

∂Q(b(θ))
db(θ)

b(θ)
]
= βF(y − b(θ))

⇐⇒ θ
[

R−1F(y − b(θ)) + R−1F′(y − b(θ))b(θ)
]
= βF(y − b(θ))

⇐⇒ θ

[
1 − F′(y − b(θ))

F(y − b(θ))
b(θ)

]
= βR

⇐⇒ θ
F′(y − b(θ))
F(y − b(θ))

b(θ) = θ − βR

⇐⇒ θ

µ
y

(
b(θ)

y

)µ−1

1 −
(

b(θ)
y

)µ b(θ) = θ − βR

⇐⇒ θ
µ

yµ b(θ)µ = (θ − βR)− (θ − βR)b(θ)µ 1
yµ

⇐⇒ b(θ)µ

(
θ

µ

yµ + θ
1
yµ − βR

1
yµ

)
= θ − βR

⇐⇒ b(θ) =
(

θ − βR
θ(1 + µ)− βR

) 1
µ

y

We have established that under a uniform price protocol investors only bid marginal

prices, hence:

p(b(θ)) = R−1F(y − b(θ))

= R−1
(

1 −
(

θ − βR
θ(1 + µ)− βR

))
= R−1

(
µθ

θ(1 + µ)− βR

)
= p(θ)

Summing up, for a uniform price auction:

b(θ) =
(

θ − βR
θ(1 + µ)− βR

) 1
µ

y

15



p(θ) = R−1
(

µθ

θ(1 + µ)− βR

)
And for a discriminatory price auction:

b(θ) = y
(

1 − θ

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

)) 1
µ

p(θ) =
β

θ̂
exp

(
λ(θ − θ̂)− λ

2βR
(θ2 − θ̂2)

)

Appendix E: Robustness

Utility

Let us first see what happens under different utility functions. All other parameters are

the same as before.

Linear Utility : E[V(θ)UP] = 1.754 > E[V(θ)DP] = 1.698

Log Utility : E[V(θ)UP] = −0.0986 < E[V(θ)DP] = −0.0973

CRRA, γ = 2 : E[V(θ)UP] = −2.0265 < E[V(θ)DP] = −2.0259

CRRA, γ = 4 : E[V(θ)UP] = −0.8065 < E[V(θ)DP] = −0.8059

CRRA, γ = 8 : E[V(θ)UP] = −0.5146 < E[V(θ)DP] = −0.5137

Distribution of θ

Let us keep CRRA with γ = 2 and vd uniformly distributed on [v, v].

θ ∼ Exp(1) : E[V(θ)UP] = −2.0265 < E[V(θ)DP] = −2.0259

θ ∼ U(0, 5) : E[V(θ)UP] = −3.5773 < E[V(θ)DP] = −3.5762

θ ∼ U(0, 10) : E[V(θ)UP] = −5.6877 < E[V(θ)DP] = −5.6851

θ ∼ N(3, 2) : E[V(θ)UP] = −4.1615 < E[V(θ)DP] = −4.1599

Distribution of vd
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Let us keep CRRA with γ = 2 and θ exponentially distributed with λ = 1.

vd ∼ U(v, v) : E[V(θ)UP] = −2.0265 < E[V(θ)DP] = −2.0259

vd ∼ N(u(0.2) = −5, 1.5) : E[V(θ)UP] = −2.0254 < E[V(θ)DP] = −2.0248

Output Growth

Let us keep CRRA with γ = 2, θ exponentially distributed with λ = 1 and vd uniformly

distributed.

y1 = y0 : E[V(θ)UP] = −2.0265 < E[V(θ)DP] = −2.0259

y1 = 1.05 × y0 : E[V(θ)UP] = −1.9677 < E[V(θ)DP] = −1.9671

y1 = 0.95 × y0 : E[V(θ)UP] = −2.0896 < E[V(θ)DP] = −2.0891

Budget Deficits

Instead of considering a multiplicative taste shock we now look at what would happen if

instead uncertainty is regarding a budget deficit, θ as follows:

c = y + ∆(b(θ))− b0 − θ

Let us keep CRRA with γ = 2 and vd uniformly distributed. θ is exponentially distributed

with λ = 1 and truncated to the interval [0, 1].

E[V(θ)UP] = −2.8976 < E[V(θ)DP] = −2.8952

Appendix F: Computational Details

Environment: Additional Elements

The private exogenous state includes a vector m of preference shocks for the government

that is i.i.d. over time. These preference shocks enter additively in the government’s de-
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cision problems. They are unbounded and therefore ensure that every feasible action is

played with positive probability in equilibrium. Introducing these shocks is like intro-

ducing randomization, ensuring convergence – that an equilibrium exists 4. These shocks

are otherwise small. The preference shocks m are distributed according to a Generalized

Type One Extreme Value distribution with scale parameter σm and correlation parameter

ρm. These distributions are chosen for their computational tractability5.

When the government issues debt, it incurs an issuance cost i(s, B, B′) ≥ 0. This is a stan-

dard feature in models with long term debt and positive recovery rates (see Dvorkin et al.

(2021) or Chatterjee and Eyigungor (2015)). Without these adjustment costs, the govern-

ment has an incentive to issue very large amounts of debt when default is imminent in or-

der to extract the value of existing bondholders’ securities. This type of “maximum” dilu-

tion behavior is counterfactual. As such, issuance costs are added to the model to prevent

it from occurring in equilibrium. Quantitatively, the amount spent financing the issuance

costs ends up being small. The issuance cost function is as in Fourakis (2023)6. This func-

tion imposes a strict limit on the one period ahead default probability from which issuing

costs are positive and is continuous in the scale of the issuance. The purpose of these is-

suance costs is to prevent a behavior Chatterjee and Eyigungor (2015) termed “maximum

dilution.”

Solving the Model

The set of objects used to solve the model numerically and assess convergence are as

follows:
4These preference shocks have the same role as the m shock introduced in Chatterjee and Eyigungor

(2012).
5Specifically, both choice probabilities and ex ante expected values can be written analytically in terms

of the values associated with the choices. We set ρm following Dvorkin et al. (2021). We then set the scale
parameter at a small number that still ensures convergence, half of that of Dvorkin et al. (2021).

6A sine wave shifted and scaled to rise from 0 to 1 as it travels from the threshold, pd, to 1:

i
(
s, B, B′) = {0 B′ ≤ B̂ or Pr (d′⋆ = 1) ≤ pd

1
2

(
1 + sin

(
π
(

Pr(d′⋆=1)−pd
1−pd

− 1
2

)))
B′ > B̂ and Pr (d′⋆ = 1) > pd

where B̂ = max{(1 − λ)B, 0}.
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1. The continuation value functions W(s, T, B, B′) and WD(s, T, B), given by:

W(s, T, B, B′) = E[V(s′, T′, m, B, B′)|s]

WD(s, T, B) = E[VD(s′, T′, m, B)|s]

2. The price functions Q(s, B′) and QD(s, B) and the expected probability of default

δ(s, B′).

In short, these are the continuation value functions, the price functions, and the expected

probability of default. Note that there are other price and value functions (including the

bid function in the discriminatory price protocol), but they can be derived based on the

above set of objects and within-period optimization. We use the above set as the list to

assess convergence.

These objects are defined on grids of their arguments. In particular, we have the following

sets that we will need to define grids for:

1. s ∈ S , that defines GDP and expected public spending.

(a) For the grid of GDP values, y(s), we use 23 points evenly spaced in logs spread

across a space spanning six of the logged variable’s long run standard devia-

tions and centered at its mean:

[E[log(y(s))]− 3σ[log(y(s))],E[log(y(s))] + 3σ[log(y(s))]]

(b) For the grid of expected public spending values, g(s), we use 17 points evenly

spaced in logs spread across a space spanning six of the logged variable’s long

run standard deviations and centered at its mean:

[E[log(g(s))]− 3σ[log(g(s))],E[log(g(s))] + 3σ[log(g(s))]]

2. B ∈ B: for the grid of b we use 241 evenly spaced points on [0, 1.2].
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3. T ∈ T , that defines surprise budget spending: for the grid of θ(T) we use 31 points

evenly spaced spanning six of the logged variable’s long run standard deviations

and centered at one (the average log is zero).

Given a guess for the set of objects listed above, in order to generate a new guess, the

iteration proceeds as follows:

1. Using the baseline set of objects, and given the restructuring structure upon regain-

ing access to financial markets, generate new guesses for WD(s, T, B) and QD(s, B).

2. Using the baseline set of objects, and those defined in the previous step, solve the

government’s problem when it enters a period in good standing. Use the solution

to generate new guesses of W(s, T, B, B′), Q(s, B′) and δ(s, B′).

3. Check the sup-norm distance between all objects. If it is less than 10−5, stop. Other-

wise, update guesses using rules of the form

fnext(·) = ξ j fold(·) + (1 − ξ j) fnew(·)

where j ∈ {V, Q}, and return to step 1.

This type of rule updates the old guess by moving fraction (1 − ξ j) of the distance

towards the new guess. In general, to ensure convergence, updates of the the price

functions tend to require more smoothing than those of the value functions. More-

over, solving the government’s problem in good standing under a discriminatory

price protocol also requires smoothing for the update of bid schedules and auction

revenue.
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